
Abstract
Timing analysis for checking satisfaction of constraints is a
crucial problem in real-time system design. In some cur-
rent approaches, the delay of software modules is precalcu-
lated by a software performance estimation method, which
is not accurate enough for hard real-time systems and com-
plicated designs. In this paper, we present an approach to
integrate a clock-cycle-accurate instruction set simulator
(ISS) with a fast event-based system simulator. By using the
ISS, the delay of events can be measured instead of esti-
mated. An interprocess communication architecture and a
simple protocol are designed to meet the requirement of
robustness and flexibility. A cached refinement scheme is
presented to improve the performance at the expense of
accuracy. The scheme is especially effective for applica-
tions in which the delay of basic blocks is approximately
data-independent. We also discuss the implementation
issues by using the Ptolemy simulation environment and
the ST20 simulator as an example.

1. Introduction

Timing is one of the most important issues in real-time
embedded system designs. The correctness of designs
largely depends on the correctness of the interaction of
hardware and software modules. Hardware/software
cosimulation provides an integrated way to simulate this
interaction, because it not only simulates the functionality
but also simulates the delay of each module and the timing
relations among the events. So it is essential for the simula-
tor to use timing information for each module, especially
software modules, which is as close to reality as possible.
An incorrect delay may cause the simulation result to differ
from the behavior of the implemented system.

Polis[1] is a hardware/software codesign environment
for control dominated embedded systems. Polis is based on
a formal model of computation called codesign finite state
machine(CFSM). In Polis, systems are modeled as a group
of communicating CFSM’s, each of which is originally

described in a formal language. e.g. Esterel[3]. In the simu-
lations phase, both hardware and software modules are

simulated in the Ptolemy environment.

Ptolemy[2] is a complete design environment for simu-
lation and synthesis of mixed hardware-software embed-
ded systems. In Ptolemy jargon, each functional block (a
software or a hardware module) is called a star. Each star
has one or more input and output ports. Stars talk to each
other through links between ports that carry discrete events
as FIFO queues.

A typical design flow in Polis is as follows (of course
there will be feedback among different stages):
1. Create the system specification using synchronous-

reactive system specification tools, such as Esterel.
2. Compile the source code and generate CFSM models.
3. Build simulation modules (stars) in the Discrete Event

domain of Ptolemy.
4. Select target resources (microcontroller and real-time

scheduler), assign each star as either hardware or soft-
ware.

5. Run the simulation in Ptolemy, paying special atten-
tion to deadline violation and timing consistency.

6. If the simulation result is satisfying, synthesize the
system into software and/or hardware.

7. Repeat more detailed simulation.
The software performance issue (clock cycles needed

for a software module to execute) is involved in step 5
above.

Software performance has to be estimated in hardware/

software codesign tools[4][5][10]. The advantages are small
simulation overhead, ease of integration, and flexibility of

porting to multiple microprocessors[8]. The disadvantage is
the poor accuracy. For hard real-time embedded system, it
is crucial to provide accurate timing information during the
simulation phase.

Instruction Set Simulators (ISS) are software environ-
ments which can read microprocessor instructions and sim-
ulate their execution. Most of these tools can provide
simulation results like values in memory and registers, as
well as timing information (e.g. clock cycle statistics).
Thus, ISS’s provide a way to refine the timing calculation
during the simulation phase.

We begin in section 2 with the analysis of existing soft-

Software Timing Analysis Using HW/SW Cosimulation and Instruction Set Simulator

Jie Liu

Department of EECS
University of California

Berkeley, CA 94720
liuj@eecs.berkeley.edu

Marcello Lajolo

Dipartimento di Elettronica
Politecnico di Torino
Torino, ITALY 10129

lajolo@polito.it

Alberto Sangiovanni-Vincentelli

Department of EECS
University of California

Berkeley, CA 94720
alberto@eecs.berkeley.edu

ware timing estimation methods and their restrictions. In
section 3, an interprocess communication architecture and
a simple protocol are designed for integrating Ptolemy with
ISS’s. In order to improve performance, a cached timing
refinement scheme is presented in section 4. An implemen-
tation example is given in section 5.

2. Related Approaches

Although the idea of performing a hardware/software
cosimulation by combining RTL hardware simulation with
cycle accurate instruction set simulators (ISS) is not new, a
seamless integration of the two environments with high
accuracy and good performance is still an unsolved prob-
lem.

In [9] a method which loosely links a hardware simula-
tor with a software process is proposed. Synchronization is
achieved by using the standard interprocess communica-
tion (IPC) mechanisms offered by the host operating sys-
tem. One of the problems with this approach is that the
relative clocks of software and hardware simulation are not
synchronized. This requires the use of handshaking proto-
cols, which may impose an undue burden on the imple-
mentation. This may happen, for example, because
hardware and software would not need such handshaking
since the hardware part runs in reality much faster than in
simulation.

In [5] a method, which keeps track of time in software
and hardware independently and synchronizes them peri-
odically, is described. In [7] an optimistic and non-IPC
approach for improving the performance of single-proces-
sor timed cosimulation are presented.

The biggest problem with all the current strategies is
how to optimize the communication overhead required to
synchronize the execution of the ISS and hardware simula-
tor. Simply synchronizing the hardware and the software
simulator in a lock-step fashion at every clock cycle would
result in very limited performance due to the very low sim-
ulation speed obtainable. The other typical drawback of
this approach is that the system has to be recompiled and
resynthesized when the partition is changed.

The commercial tool Mentor-Seamless CVE[12] can
offer a certain number of optimization techniques such as
an instruction-fetch optimization that can directly fetch
operations to the memory-image server, thus eliminating
these cycles from the logic simulator workload. With a
memory image server for memory read/write optimization,
it can process operations 10,000 time faster than a logic
simulator. This optimization is controlled by the user: early
in the co-verification process, all memory operations
should be directed to the logic simulator to debug all the
operations of the memory sub-system. As the co-verifica-
tion progresses, larger amounts of memory access can be

optimized gradually, further speeding up the software exe-
cution.

The link with an ISS is not only applicable to hardware
software cosimulation, but also useful for the general prob-
lem of embedded program timing analysis. For example, in
[4] an approach which combines simulation with formal
techniques is presented. They address the timing analysis
problem by trying to approach each step in the analysis
with the best methods currently known. They perform an
architecture classification and a successive analysis and
combine the classical approach of Instruction Timing
Addition (ITA), in which the addition of the execution
times in a basic block or in a path segment is computed,
with a Path Segment Simulation (PSS), in which a cycle
true processor model is used on a specific program path.
Basically, they use the ITA approach for addressing the
problem of data dependent instruction execution timing
typical of some microcoded CISC architectures (e.g. multi-
plication) and PSS for all the other problems related to the
impact of the architecture (pipelining, caching, supersca-
larity). The ISS is run only once on all basic blocks in the
program and then the information collected is used with a
formal analysis to determine the worst case execution time
of the program.

Our approach is close to [4], but we determine which
basic blocks are used at run-time by using a delay caching
technique. Our approach is to leverage on an existing

approach to time-approximate cosimulation[1], based on
source-code estimation of execution time, and refine its
precision by using an ISS. In particular, we do not require
the designer to change the system specification. Hence we
preserve the partitioning approach based on rapid interac-
tion with the simulator, without the need to recompile or
modify the specification (other than change implementa-
tion attributes for modules). The performance remains
acceptable, with only a slight decrease in accuracy, thanks
to a totally automated caching approach.

We also standardize the interface between the ISS and
the system simulator, thus making the porting to a new ISS
very easy.

3. Architecture and Protocol Design

The integration of Ptolemy and ISS should have the fol-
lowing properties:

● Supporting different ISS’s
● Uniform interface
● Minimize code generation
To achieve these requirements, an interprocess commu-

nication architecture is provided. More precisely, a wrap-
per program is designed to glue Ptolemy and the ISS
together.

The IPC architecture is shown in Figure 1. The wrapper

program acts both as an interface unifier and a command
translator. For each kind of ISS, a wrapper is built specifi-
cally so that it accepts the predefined ISS commands from
Ptolemy, translates them into ISS syntax, and vice versa.

The syntax is defined to be concise enough so that the
communication on each pipe is minimized. In other words,
the commands adapt the CFSM simulation model to the
ISS. The set of commands are listed in Table 1.

The system works as follows:
❒In the setup phase of each star that uses an external

ISS, it first checks if the wrapper has been started. If not, it
forks a subprocess and executes the wrapper.

❒Each time the star gets fired in Ptolemy, it detects
whether the delay needs to be refined (see section 5). If so,
it sends the module information together with the variables
to the wrapper.

❒After the wrapper has received all the information
needed to run the simulator, it translates it into the ISS syn-
tax, and sends it to the ISS.

❒The ISS loads the executable code of the correspond-
ing star, sets the variable values and breakpoints, and exe-
cutes the code up to the required breakpoint.

❒The wrapper waits until the ISS finishes the requested
execution, and gets the clock cycle counting information.

❒The wrapper sends the clock cycle counting result to
the Ptolemy star in a pre-defined format.

When this value is returned from the wrapper, the star

adds it to the timestamp of the input event and gets the
time-stamp of the output event. Then, one communication
session is considered finished.

4. Cached Refinement Scheme

It is easy to imagine that, for a long run, if an ISS is
used for every firing of a software star, the simulation could
be quite slow. In order to speed up the timing refinement
process and to keep the advantage of accurate clock cycle
counting, we designed a cached refinement scheme, based
on the properties of the s-graph and the discrete event
semantics.

4.1. S-graph
An s-graph is a model of software execution that is used

by the Polis cosimulation. It is a directed acyclic graph
(DAG) with one source node called BEGIN and one sink
node END. In s-graphs, there are two more types of nodes,
ASSIGN and TEST. ASSIGN and BEGIN nodes have only
one successor, and TEST nodes have two or more. An
expression is associated with each TEST node, and accord-
ing to the value of the expression (boolean or integer) the
TEST node selects one of its children. An execution of an
s-graph starts from the BEGIN node, traverses several
nodes, until it reaches the END node. The sequence of
nodes and edges during one execution forms a path of the
execution. From the structure of the s-graph, it is easy to
conclude:

Property 4.1: An s-graph can only have a finite number
of paths, and for each execution the path is completely
determined by the expression values at TEST nodes.

A node is called an EMIT node if its function is to emit
an event to an output port of the CFSM. The time delay of
emitting an output event is the time cost of the execution
from the BEGIN node to the corresponding EMIT node. If
we treat the END node as a special kind of event emission,
the expressions at TEST nodes together with the final point
of the path (EMIT or END node) uniquely specify a path to
generate an event.

Generally speaking, the time delay of an event is not
equal to the sum of the delays of each node along the path.
For example, optimizations of the compiler, caching and
pipelining can largely effect the delays. In particular, deep
pipelining can overlap the execution of several basic blocks
in the program. In addition, program and instruction
fetches introduce dependences of the execution time of a
path on the sequence of instructions/data fetches. We can
thus have a great variance in the delay information for dif-
ferent executions of the path under different input stimuli
and internal conditions. However, when we look at an
entire path, the delay often varies in a relatively small
range. In other words, when considering a medium-large
level of granularity, most software modules have execution

Table 1: Ptolemy-ISS Command Stack

Name Syntax Description

start s <module>
<?output?>

Initialize ISS, load binary code,
set breakpoints at the beginning of
the module and the correspond-
ing output event emission point. If
<output> is not set, the default
end point is the end of the module.

write w <variable>
<value>

set a variable; variables could be
CFSM states, event flags, star
parameters, input values.

run r simulate up to a breakpoint

statistic z get the clock cycle statistic

quit q terminate the simulator.

star ISS

 toW

fromW

stdin

stdout fromISS

stdin

stdout

Figure 1. Interprocess Communication Architecture

pipe

pipe pipe

pipe

 toISS

 ISS Wrapper
Ptolemy

delays that are approximately independent of past execu-
tions and depend mostly on input data. For this sort of
applications, the delay of an execution path can be stored
and be used the next time when the same path is traversed.
Although this approximation reduces the accuracy, the sim-
ulation execution time can be dramatically improved.

4.2. The Ptolemy Discrete Event Domain

The semantics of Ptolemy DE domain[6] is that all sig-
nals (events) have two fields, a tag and a value. The tag is
the timestamp, which is totally ordered among all the
events. A star simply receives events from its the input
ports and generates events to its output ports. The process
of generating new output events can be divided into two
parts: calculating the values and finding the timestamps.
These two tasks are independent of each other, and can be
done separately. So it is possible to use Ptolemy for behav-
ior simulation and the ISS for timing. Furthermore, in the
process of finding out the value of the event, the s-graph is
executed from the BEGIN node to the proper EMIT node
or END node. If all the predicates on this path are
recorded, the internal path information is extracted. This
unique internal path can then be used for caching timing
information.

4.3. Cached Timing Refinement Scheme
A set of variablesiTrace , one for each TEST node

and termination point, are used to record the expression
values on the TEST nodes. A table is created to store the
timing information. The table has two fields; one of which,
called thekey,is encoded fromiTrace ; the other, called
thedelay, stores the delay value. During the firing of a star,
the behavior model is first executed in Ptolemy. Then, the
executed path of the s-graph is stored iniTrace . If this
particular path has been traversed before, i.e. the samekey
is in the table, the correspondingdelayis read and used as
the delay for this execution. In this process, the ISS is not
called. If there is no suchkeyin the table, the ISS is called
as described in section 3. The returned delay value is used
for event delay calculation, and at the same time a new
entry is added in the table.

The advantage of using this scheme is that for each
internal path, the external ISS is called only once. So the
number of Ptolemy-ISS communications is significantly
reduced. It is obvious that this scheme is only appropriate
for s-graphs with approximately constant delay for each
path.

4.4. Stochastic Analysis
Due to the increasing complexity of the processors that

are used for embedded applications, it is impossible to
ignore the effects of caching and pipelining in the software
part both in cosimulation and in static estimation. More-
over, a single execution of each basic block of the program

is not sufficient to accurately characterize the block,
because it neglects the interaction with previous, subse-
quent and preempting basic blocks.

Although stochastic measures are considered unaccept-
able for hard real-time embedded systems, we believe that
applying a statistical analysis on the results obtained from
linking Ptolemy with the ISS at an early design stage could
improve the accuracy of our high-level trade-off evaluation
method by automatically stopping the slow cosimulation
when the measured variance of the delay in a path goes
below a certain threshold. Alternatively, this provides the
user with a measure of which module is particularly hard to
characterize (due to a high variance of measured delays), in
order to decide to continue simulations with the ISS, or use
only cached delays.

Sometimes applications such as multi-media use pro-
cessor architectures with a sophisticated non-standard
instruction set. At present, compilers are not able to gener-
ate good code for that type of architectures and the user
must manually optimize the code. In the Polis approach,
this would result in an assembly code subroutine called
inside Esterel modules. In this case, the modules cannot be
directly simulated in the Ptolemy environment because the
code cannot be compiled on a workstation. It is desirable to
skip the execution of that function in Ptolemy and update,
by using the ISS, not only the delay information but also
the arithmetic/logic result of the computation.

Both activities outlined are still at a very preliminary
stage, but the results seem quite promising.

5. Implementation

A prototype of this scheme has been implemented by

using the Ptolemy and the ST20 Toolset[11]. Two parame-
ters are added for each star to allow users to choose the
delay calculation method--that of [10], cached refinement,
and uncached refinement. A hash table is used to record
and retrieve the path delay. The key of the hash table is
encoded from theiTrace variables and the ID of an out-
put port.The typical flow of this implementation is shown
in Figure2.

s-graph
 ST20Filter

 Target

 ST20CC

binary code
 Star

 Z-Filter

Traced

 Ptolemy ST20wrapper ST20RUN

Figure 2. Implementation

 code s-graph

 C code

Simple benchmarks are tested using these three
approaches. COMPARE is a 2-input-2-output module
which compares two integers A and B. If A>B, it emits
output O1, otherwise it emits O2. ADDER is a floating
point adder with one input A, one internal parameter B,
and an output SUM. The results of using software perfor-
mance estimation and the ISS are shown in Table 2 and
Table 3 respectively, wheredctA is the flag of detecting an
input A; A stands for the value of input A;output is the
termination point with 0 for END;estimated is the
clock cycles obtained from the method of [10]; andmea-
sured is that from the ISS.

COMPARE is a module without function calls, where
the compiler optimization make the delay of an entire path
to be less than the delay of the sum of each node.

Table 3 shows a module with two user defined func-
tions; the delay of these functions are obtained from the
statistic of sample runs with typical inputs. Also notice that
the delay of a same path varies with the input data values.

The experiments are done on a SPARC20 workstation.
For a simulation of 100 firings of COMPARE or ADDER,
despite the time of starting the ISS (approximately 3 Sec.),
the cached timing analysis is about 10 times slower than
that of [10], but 1000 times faster than the non-cached
exact timing analysis.

6. Conclusion

In this paper, an ISS-based timing refinement scheme is
studied in the context of the Polis codesign approach. By
using the ISS, some intrinsic problems of software perfor-
mance estimation are solved. An open architecture is pre-
sented to adapt the differences among ISS’s. Based on the
properties of the s-graph and the DE semantics, a cached
timing refinement scheme is studied. The result is that for
s-graphs with approximately constant delay paths, the
delay of one execution can be stored and reused the next
time when the same path is traversed. A prototype has been
implemented by using the Ptolemy and the ST20 simula-
tion tools. The result shows that the timing analysis scheme
can be seamlessly integrated into the Polis environment.

Acknowledgments

Thanks to Dr. Luciano Lavagno for his precious com-
ments and suggestions during the working of this paper;
also to Giovanni Bestente, Fabio Bellifemine, Antonio
Bonomo and Giovanni Ghigo of CSELT, Torino, Italy for
their help with defining the problem and outlining solutions

References

[1] F. Balarin, M. Chiodo, etc. “Hardware-Software Co-design of
Embedded Systems”, Kluwer Academic Publishers, 1997

[2] Ptolemy Home Page, “http://ptolemy.eecs.berkeley.edu”
[3] Esterel Home Page, “http://www.inria.tr/meije/esterel”
[4] R. Ernst, W. Ye, “Embedded Program Timing Analysis Based

on Path Clustering and architecture classification”, Proceed-
ings of ICCAD, Nov. 97, PP 598-60

[5] K. ten Hagen, H. Meyr, “Timed and Untimed Hardware Soft-
ware Cosimulation: Application and Efficient Implementa-
tion”, Proceedings of Int. Workshop on Hardware-Software
Codesign, Oct. 1993

[6] E. A. Lee and A. Sangiovanni-Vincentelli, “A Denotational
Framework for Comparing Models of Computation”, ERL
Memorandum UCB/ERL M97/11, University of California,
Berkeley, CA 94720, January 30, 1997.

[7] S. Leef, “Hardware and Software Co-Verification - Key to Co-
Design”, Electronic Design, September 15, 97, PP 67-71

[8] C. Passerone, L.Lavagno, etc. “Trade-off Evaluation in
Embedded System Design via Co-simulation”. Proceedings
of ASP-DAC, PP 291-297, 1997.

[9] J. Rowson, “Hardware/Software Co-simulation”, Proceedings
of DAC, 1994, PP 439-440.

[10] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient Soft-
ware Performance Estimation Methods for Hardware/Soft-
ware Codesign”, Proceedings of DAC, 1996, PP605-610.

[11] “ST20 ’Osprey’ Toolset: User Manual”, SGS-THOMSON
Electronics, March 1997

[12] S. Yoo, K. Choi, “Synchronization Overhead Reduction in
Timed Cosimulation” Proceedings of Int. High Level Design
Validation.

Table 2: COMPARE MODULE

state dctA dctB output estimated measured

0 - - - 57 51
1 0 0 0 77 63
1 0 1 0 77 59
1 1 0 0 77 49
1 1 1 1 106 56
1 1 1 2 106 58
2 - 0 0 67 49
2 - 1 1 98 56
2 - 1 2 98 58
3 0 - 0 41 66
3 1 - 1 100 61
3 1 - 2 100 63

Table 3: ADDER MODULE

state dctA A B output estimated measured

0 - - 0.1 0 120 114

1 0 - - 1 45 50

1 1 0 0 1 887 392

1 1 0.1 0.1 1 887 755

1 1 2.3e12 5.3e8 1 887 790

1 1 0.123 0.987 1 887 855

